Type:
Journal
Description:
Dye-sensitized solar cells (DSSCs) are promising third generation photovoltaic devices given their potential low cost and high efficiency. Some factors still affect DSSCs performance, such structure of electrodes, electrolyte compositions, nature of the sensitizers, power conversion efficiency, long-term stability, etc. In this work we discuss the effect of electrical stresses, which allow to improve DSSC performance. We have investigated the outcomes of forward and reverse DC bias stress as a function of time, voltage, and illumination level in the DSSCs sensitized with the N719, Ruthenium complex based dye. We demonstrate that all the major solar cell parameters, i.e., open circuit voltage (VOC), short circuit current (ISC), series resistance (ROC), fill factor (FF), and power conversion efficiency are strongly influenced by the stress conditions and a clear reversibility of the parameters on the stress type is shown. In this …
Publisher:
Publication date:
1 Jan 2016
Biblio References:
Origin:
IRPS 2016