Type:
Journal
Description:
In this article, using kinetic Monte Carlo simulations, we study two morphological instabilities, namely step bunching and step meandering, that are known to occur during the epitaxial growth of Silicon Carbide on misoriented substrates. Specifically, we analyze the simulated final, i.e. after the growth process, step roughness (related to the step meandering instability) as function of the growth and temperature during growth of cubic SiC polytype for substrates with miscut towards the [110] and [112̄] directions and compare these results with recent experimental findings. We also study the simulated final terrace width distribution (related to the step bunching instability) as function of the substrate polytype finding that the cubic polytype does not suffer of neither the geometrical nor the energetic surface instability. For this reason the cubic polytype, showing a better planarity, could be a good candidate for subsequent …
Publisher:
American Institute of Physics
Publication date:
1 Nov 2010
Biblio References:
Volume: 1292 Issue: 1 Pages: 19-22
Origin:
AIP Conference Proceedings