-A A +A
In this paper, hydrogen bubbling delamination of graphene (Gr) from copper using a strong electrolyte (KOH) water solution was performed, focusing on the effect of the KOH concentration (CKOH) on the Gr delamination rate. A factor of ∼10 decrease in the time required for the complete Gr delamination from Cu cathodes with the same geometry was found increasing CKOH from ∼0.05 M to ∼0.60 M. After transfer of the separated Gr membranes to SiO2 substrates by a highly reproducible thermo-compression printing method, an accurate atomic force microscopy investigation of the changes in Gr morphology as a function of CKOH was performed. Supported by these analyses, a microscopic model of the delamination process has been proposed, where a key role is played by graphene wrinkles acting as nucleation sites for H2 bubbles at the cathode perimeter. With this approach, the H2 supersaturation …
American Institute of Physics
Publication date: 
9 Jun 2014

G Fisichella, S Di Franco, F Roccaforte, S Ravesi, F Giannazzo

Biblio References: 
Volume: 104 Issue: 23 Pages: 233105
Applied Physics Letters