-A A +A
A stochastic simulation method designed to study at an atomic resolution the growth kinetics of compounds characterized by the sp3‐type bonding symmetry is presented. Formalization and implementation details are discussed for the particular case of the 3C‐SiC material. A key feature of this numerical tool is the ability to simulate the evolution of both point‐like and extended defects, whereas atom kinetics depend critically on process‐related parameters. In particular, the simulations can describe the surface state of the crystal and the generation/evolution of defects as a function of the initial substrate condition and the calibration of the simulation parameters. Quantitative predictions of the microstructural evolution of the studied systems can be readily compared with the structural characterization of actual processed samples is demonstrated.
Publication date: 
1 May 2019

Antonino La Magna, Alessandra Alberti, Erik Barbagiovanni, Corrado Bongiorno, Michele Cascio, Ioannis Deretzis, Francesco La Via, Emanuele Smecca

Biblio References: 
Volume: 216 Issue: 10 Pages: 1800597
physica status solidi (a)