-A A +A
Type: 
Journal
Description: 
Monitoring of ammonium ion levels in water is essential due to its significant impact on environmental and human health. This work aims to fabricate and characterize sensitive, real-time, low-cost, and portable amperometric sensors for low NH4+ concentrations in water. Two strategies were conducted by cyclic voltammetry (CV): electrodeposition of Au nanoparticles on a commercial polyaniline/C electrode (Au/PANI/C), and CV of electropolymerized polyaniline on a commercial carbon electrode (Au/PANIep/C). Au NPs increase the electrical conductivity of PANI and its ability to transfer charges during electrochemical reactions. The electrode performances were tested in a concentration range from 0.35 µM to 7 µM in NH4+ solution. The results show that the Au/PANI/C electrode performs well for high NH4+ concentrations (0.34 µM LoD) and worsens for low NH4+ concentrations (0.01 µM LoD). A reverse performance occurs for the electrode Au/PANIep/C, with a 0.03 µM LoD at low NH4+ concentration and 0.07 µM LoD at high NH4+ concentration. The electrodes exhibit a good reproducibility, with a maximum RSD of 3.68% for Au/PANI/C and 5.94% for Au/PANIep/C. In addition, the results of the repeatability tests show that the electrochemical reaction of sensing is fully reversible, leaving the electrode ready for a new detection event.
Publisher: 
MDPI
Publication date: 
26 Jun 2024
Authors: 

Roberta Farina, Silvia Scalese, Domenico Corso, Giuseppe Emanuele Capuano, Giuseppe Andrea Screpis, Maria Anna Coniglio, Guglielmo Guido Condorelli, Sebania Libertino

Biblio References: 
Volume: 29 Issue: 13 Pages: 3028
Origin: 
Molecules